

Next-Generation Object Database
Standardization

Date: 27-September-2007

mars/2007-09-13

Send Comments or Inquiries to mailto:objectdb@omg.org

Object Database Technology Working Group
White Paper

Abstract: Following the dissolution of the Object Data Management Group (ODMG) in 2001,
standardization efforts for object databases languished. What has emerged since is a fractured marketplace
where each vendor has developed a unique set of programming interfaces and features and no truly portable
way of interacting with an object database exists. In 2005, the OMG’s Object Database Technology
Working Group was formed as the successor to the ODMG, and our first effort has been to create the object
equivalent of the relational calculus. We believe that the foundation for this “object calculus” can be found
in the research done by Prof. Kazimierz Subieta and his students at the Polish-Japanese Institute of
Information Technology. We have prepared this white paper to serve as an introduction to Prof. Subieta’s
“stack-based architecture” (SBA) and to define the OMG version of it. The definitions and semantics of
SBA will, we believe, allow the construction of a complete and correct object model that supports a
powerful object query language as well as a complete and correct set of equivalent native programming
language bindings.

This paper presents a discussion of technology issues considered in the Object Database Technology
Working Group of the Object Management Group. The contents of this paper are presented to create
discussion in the computer industry on this topic; the contents of this paper are not to be considered an
adopted standard of any kind. This paper does not represent the official position of the Object
Management Group.

Next Generation Object Database Standardization

OMG Object Database Technology Working Group White Paper
Document mars/2007-08-01

Page 2

Table of Contents

Introduction... 3
1 The basic model .. 4
2 Extending the model to include inheritance.. 9
3 Extending the model to include roles.. 10
4 Programming language access.. 13
5 Updating from AOQL... 17
6 So what does all this mean? .. 17
7 A new object database standard.. 19
8 References... 19

Next Generation Object Database Standardization

OMG Object Database Technology Working Group White Paper
Document mars/2007-08-01

Page 3

Introduction
The OMG’s Object Database Technology Working Group (ODBTWG) was formed at
the December 2005 Technical Working Group meeting in Burlingame, California1. This
working group was created to “re-ignite” object database standardization, which has
languished since the dissolution of the Object Data Management Group (ODMG). In
support of this goal, the OMG acquired the rights to the ODMG’s intellectual property
[1] (the ODMG 3.0 specification) and the ODBTWG [2] conducted a survey of object
database vendors on areas of interest for standardization.

The survey responses indicated that vendors were most interested in standardization
efforts focused on:

• XML/XSD (standard XSD for data import/export)
• Standardized programming language bindings, especially for new languages like

C#
• Standardization of advanced features like replication, e.g. define expected

behaviors etc.

The ODBTWG discussed 3 possible ways to pursue standardization:

1. Develop a theoretical underpinning for object databases and base all standards on
it (object database equivalent of the relational calculus)

2. Quickly produce a standard on a vendor-neutral technology, like a standard XML
representation for object database contents

3. Quickly develop a standard for C#/.NET programming language bindings,
working through vendor-specific issues (“we already have a C# API that our
customers use and we don’t want to change our code”)

Approach 1 was chosen from the above list. The catalyst for its selection was a paper
submitted by Professor Kazimierz Subieta of the Polish-Japanese Institute for
Information Technology (PJIIT) which provided a thorough and complete set of
definitions for an abstract object data store and a corresponding stack-based abstract
query engine (http://www.sbql.pl/). This is work that had not been done for object
databases in the past, and it was generally recognized as a weakness for object databases
in general and the ODMG 3.0 specification in particular (e.g. incompleteness and
inconsistency in the object model given in Chapter 2). Approach 2 was briefly considered
but since the W3C was already standardizing object representation in XML we decided to
wait until their work was completed to avoid duplication of effort. Approach 3 was
considered also but was thought to hold as little promise for adoption as the original
ODMG 3.0 language binding efforts given the absence of a sound theoretical foundation
upon which to build the bindings.

1 Formation of this WG in 2005 should not be interpreted to mean that OMG’s interest in object databases
started then. It actually started in September 2003 with a single presentation and continued for the next 2
years during which time OMG obtained the rights to the ODMG3.0 Specification from Morgan Kaufman.

Next Generation Object Database Standardization

OMG Object Database Technology Working Group White Paper
Document mars/2007-08-01

Page 4

The following sections of this paper explain the abstract object store and its associated
abstract query engine. To avoid being overly tied to Professor Subieta’s work we have
chosen to use different names and acronyms for the abstract store models et. al., but the
influence of his research on our thinking will be obvious. It is our hope that object
database vendors will see the potential in this work and join us in developing the full
specification of this abstract object database, which should serve as a platform-
independent model upon which specific implementations can be successfully built.

1 The basic model
The basic abstract store model, referred to here as Abstract Store model 0 (AS0)
corresponds to Professor Subieta’s “M0” store model. The AS0 store model has the
features required to persist objects having a minimalist object model. In the AS0 model,
everything is an object, and objects resolve to a single value. As such, there is no concept
of “object attributes,” where object attributes are analogous to fields in a record. In AS0,
each “object attribute” would itself be an object, and the aggregations of these “object
attributes” into an “object” would be accomplished using an aggregation object. Each
AS0 object has a unique identifier referred to as its object ID, and an external name that
is assigned to the object. The external name is a developer-chosen domain name
applicable for the type of object (i.e. a class name or the name of a “field”), so unlike the
object ID it is not guaranteed to be unique. In addition to the ID and external name, each
object has a value that is returned when the object is referenced. The value can be a
number, a string, the ID of another object, or a set of objects. Therefore, in the AS0
model all objects can be represented by tuples (triplets) as follows:

• Atomic object: <i,n,v> where i is the ID of the object, n is an external name
assigned to the object, and v is the value of the atomic object (e.g. an integer, a
string, etc.)

• Pointer (reference) object: <i1,n,i2> where i1 is the ID of the reference object, n
is an external name assigned to the object, and i2 is the ID of the object referred
to.

• Aggregation object: <i,n,T> where i is the ID of the object, n is an external name
assigned to the object, and T is a set of objects comprising the aggregate.

The AS0 store itself can be represented by a tuple as well:

• AS0 store: <S,R> where S is a set of objects and R is the set of “root” object IDs
(that is, the set of object IDs that an external application would use as a “starting
point” to navigate to all of the other objects in the store)

The AS0 model does not include static inheritance, and its simplicity allows concrete
realization in simple tabular data, XML, relational tables, or persisted objects. Consider
the following instance of an AS0 store:

Next Generation Object Database Standardization

OMG Object Database Technology Working Group White Paper
Document mars/2007-08-01

Page 5

aStore = <S = {< i1, Emp, { < i2, name, ”Doe” >,
 < i3, sal, 2500 >,
 < i4, worksIn, i17 > } >,
 < i5, Emp, { < i6, name, ”Poe” >,
 < i7, sal, 2000 >,
 < i8, worksIn, i22> } >,
 < i9, Emp, { < i10, name, ”Lee” >,
 < i11, sal, 900 >,
 < i12, address,{<i13, city, “Rome” >,
 <i14, street, “Boogie”>,
 <i15, house#, 13 > } >,
 < i16, worksIn, i22 > } >,
 < i17, Dept, { <i18, dname, ”Trade” >,
 < i19, loc, “Paris” >,
 < i20, loc, “London” >,
 < i21, employs, i1 > } >,
 < i22, Dept, { < i23, dname, ”Ads” >,
 < i24, loc, “Rome” >,
 < i25, employs, i5 >,
 < i26, employs, i9 > } > },
 R = {i1, i5, i9, i17, i22} >

Figure 1: Example of AS0 store

The AS0 store shown in Figure 1 contains 5 “root” objects identified by the set R. These
objects have object IDs i1, i5, i9, i17, and i22. Object i1 is an “Emp” (Employee) object,
which is an aggregation object. Referencing object ID i1 will return a set of objects which
correspond to what we would consider to be the “object attributes” of an Emp object, in
this case a name, a salary, and a reference object contained in a field/attribute named
“worksIn.” The employee name is contained in the object with ID i2, which has external
name “name,” and which resolves to the string value “Doe.” Likewise, the salary is
contained in the object with ID i3, which has external name “sal,” and which resolves to
the numeric value 2000. The department the employee works in is returned in the object
with ID i4, which has external name “worksIn,” and which resolves to object ID i17. You
can see that the object with ID i17 is an object with external name “Dept,” which is also
an aggregation object that resolves to a set of objects containing the the department name,
its locations, and reference objects pointing to the employees of the department (the
objects with the external name “employs”). A graphical depiction of the contents of the
store in Figure 1 is shown in Figure 2.

Next Generation Object Database Standardization

OMG Object Database Technology Working Group White Paper
Document mars/2007-08-01

Page 6

There is nothing remarkable about this simple store model and it seems quite intuitive. Its
significance lies in the precise definition of an object as one of the 3 allowed kinds of
tuples and of the store itself as a pair of sets (the set of all objects in the store and the set
of all “root” object IDs).

Using this simple data store model as a foundation, we can now define an abstract stack-
based query processor that can query the contents of an AS0 store. Stack-based machines
will be familiar to anyone who has used a Hewlett-Packard Reverse Polish Notation
(RPN) calculator, so this paper will not go into depth on stack-based machines in general
but will instead focus on the stack-based query processor itself.

i5 Emp

i6 name ”Poe”

i7 sal 2000

i8 worksIn

i1 Emp

i2 name ”Doe”

i3 sal 2500

i4 worksIn

i22 Dept
i23 dname ”Ads”

i24 loc ”Rome”

i25 employs

i26 employs

i17 Dept

i18 dname ”Trade”

i19 loc ”Paris”

i20 loc ”Rome”

i21 employs

i9 Emp

i10 name ”Lee”

i16 worksIn

i11 sal 900

i12 address

i13 city ”Rome”

i14 street ”Boogie”

i15 house# 13

Figure 2: Graphical representation of AS0 store in Figure 1

Next Generation Object Database Standardization

OMG Object Database Technology Working Group White Paper
Document mars/2007-08-01

Page 7

In order to query the contents of an AS0 store, we need a query language to describe what
we want from the store and a query processor to interpret the query language and return
the desired items from the store. The query language we will use is the Abstract Object
Query Language (AOQL), which is (at this point) identical to Prof. Subieta’s Stack-
Based Query Language (SBQL). The syntax rules for AOQL for an AS0 store are as
follows:

Table 1: AOQL syntax rules

Syntax Rule Notes

query ::= literal The set L

query ::= name The set N

query ::= unaryAlgOperator query Unary algebraic operators

unaryAlgOperator ::= count | sum | max | - | sqrt | not | avg |
...

query ::= query binaryAlgOperator query Binary algebraic operators

binaryAlgOperator ::= =|<| >| +| -| *| /| and| or| intersect|...

query ::= query NonAlgOperator query Non-algebraic operator

NonAlgOperator ::= where | . | join | ∀ | ∃

query ::= ∀query query | ∃query query Alternative (traditional)
syntax for quantifiers

query ::= query as name Name definition

query ::= query group as name Grouping and name
definition

query ::= if query then query Conditional query

query ::= if query then query else query Another conditional query

querySeq ::= query | query, querySeq Sequence of queries

query ::= struct(querySeq) | (querySeq) Structure constructor

query ::= bag() | bag(querySeq) Bag constructor

query ::= sequence() | sequence(querySeq) Sequence constructor

Note that as an abstract query language, a concrete implementation could use whatever
operator names it desires as long as these general rules are followed. Likewise, in the
AS0 store a concrete implementation would not have to actually include the class name in
every object in the store, but the equivalent functionality must be provided. The AS0
store model is not meant to constrain a concrete implementation, and likewise AOQL
syntax is not intended to constrain an actual implementation.

Next Generation Object Database Standardization

OMG Object Database Technology Working Group White Paper
Document mars/2007-08-01

Page 8

Table 2: AOQL Examples

Example Query Features illustrated

2000 Literal

Emp Name

Sal Name

2+2 algebraic operator

sal > 2000 algebraic operator

Emp where (sal > 2000) Non-algebraic and algebraic
operator

Emp where (sal > 2000) . (name, (worksIn.Dept)) As before, plus projection and
structure composition

((Emp as e) where ((e.sal) > (2000 + x + y))).e.name Auxiliary name e

((Emp as e) join ((e.worksIn.Dept) as d)) . (e.name,
d.dname)

Dependent join with auxiliary
naming, path expression,
projection and struct

∀ (Emp where sal < 1000) ((worksIn.Dept.dname) =
“Ads”)

Universal quantifier with no
“variable”

 ∃ (Emp as e) count(e.address) = 0 Existential quantifier with a
“variable” e and counting
function

bag(1, 1, 2, 3, 5, 8, 3, 13) Bag constructor

2000 Literal

Table 2 above shows examples of AOQL queries that illustrate features of the syntax
defined in Table 1.

Consider the following AOQL query applied to the example AS0 store depicted in Figure
1 and Figure 2:

Dept join avg((employs.Emp).sal)

This query returns each department along with the average salary of its employees. The
abstract query processor evaluates the query using two stacks. One stack is the
environment stack (abbreviated ENVS in Prof. Subieta’s papers) and the other is the
query results stack (abbreviated QRES in Prof. Subieta’s papers). The query results stack
is analogous to the stack in a Hewlett-Packard RPN calculator as it holds intermediate
results of the query evaluation and at completion contains the final result. The
environment stack is analogous to a program call stack and it contains the set of objects
upon which the various stages of the query are performed.

Next Generation Object Database Standardization

OMG Object Database Technology Working Group White Paper
Document mars/2007-08-01

Page 9

In the query above, the environment stack initially will contain all of the root object IDs
(set R) in the store. The evaluation of the string “Dept” will cause a set containing the
objects IDs of all objects having external name “Dept” (the set would be {i17, i22}) to be
pushed onto the query results stack. When the “join” string is encountered, the query
processor will evaluate the first object ID (i17) and, since i17 refers to an aggregation
object, the associated set of objects (in this case the objects corresponding to {i18, i19,
i20, i21}) is pushed onto the environment stack. As processing continues, intermediate
results are placed onto the query results stack while sets of objects that the query
operators are to access are placed on the environment stack. To see all of the steps the
abstract query processor takes to evaluate this expression, see the accompanying Flash
movie omg.swf.2 This Flash movie was put together by Prof. Subieta to show how the
stack-based query processor works.

To illustrate the power of the AS0 and AOQL models, the ODBTWG received a
demonstration from Prof. Subieta of a concrete AOQL implementation developed at the
PJIIT that uses an XML file as an AS0 store. A GUI allows the user to query the store
contents using a concrete syntax that follows the rules defined in Table 1. Using this
demonstration program, it becomes obvious that AOQL’s syntactical rules in conjunction
with the definition of an AS0 store makes it possible to perform complex queries very
easily, some of which are difficult to express in standard SQL. For example, if you want
a report with the name of each department and the sum of the salaries of its employees
which are not bosses, this can be written as:

deptemp.(((Dept as d) join ((sum(d.employs.Emp.sal._VALUE)
- (d.boss.Emp.sal._VALUE)) as s)).(d.dname._VALUE, s));

Figure 3: Sample concrete query with XML store from demo program

In Figure 3, “deptemp” is a name for the XML data store that is a concrete
implementation of an AS0 store. The concrete query language shown here is very close to
the abstract syntax in Table 1. The query joins a department object (renamed to “d”) with
the sum of the values of the departments’ employees’ salaries less the salary of the
department boss, where this total is renamed to “s.” The query then returns a pair
containing the department name and the total “s.”

2 Extending the model to include inheritance
Extending the AS0 store model to include static inheritance is easily done by changing
the definition of the AS0 store as follows to create the AS1 store model, which
corresponds exactly to Prof. Subieta’s M1 store model:

• AS1 store: <S,C,R,CC,SC> where S is a set of objects and R is the set of “root”
object IDs just as in AS0. C is the set of all classes in the store, and classes
themselves are objects. The class objects in an AS1 store are aggregation objects

2 Link opens up a zip file; open the .swf file inside.

Next Generation Object Database Standardization

OMG Object Database Technology Working Group White Paper
Document mars/2007-08-01

Page 10

which contain only class invariants such as methods; they do not contain variants
such as “data members” or “fields” (e.g. <i1, “EmpClass”, { <i2, “changeSal”,
(method code) >, <i3, “changeDept”, (method code)> } >). CC is a relation (a
table) that defines which classes are related by inheritance, e.g. if <i1,i2> ∈CC,
then the class identified by object ID i1 inherits from the class identified by object
ID i2. SC is a relation that defines class membership for the non-class objects in
the store, e.g. if <i1,i2> ∈SC, the object identified by object ID i1 is a member of
the class identified by object ID i2. Note that the tuples (triplets) in the store are
the same as for the AS0 store.

The abstract query language (AOQL) itself does not need to be modified to support the
AS1 store. The only change required is the evaluation process which pushes objects onto
the environment stack. When an object identifier is evaluated, the object’s contents are
pushed onto the environment stack. Afterward, any invariants for the object’s class and
its superclasses are also pushed onto the environment stack. This gives the query
processor access to all of the object’s “fields” and inherited methods.

3 Extending the model to include roles
Static inheritance is useful but is sometimes insufficient for modeling real-world
situations. For example, a Person class might include basic attributes for a person, but
these might not include the attributes necessary to define an Employee class. With only
static inheritance, the schema typically will have the Employee class inherit from the
Person class. The difficulty comes when a Person object is created and that object must
later be made to model an Employee (e.g. the real-world person is hired by a company).
In this case, the Person object might be used to construct a new Employee object and the
original Person object might be discarded. This introduces complexity in an application,
since you don’t really need to create a new “person” when someone gets a job. The
alternative to using inheritance is to use composition, where an Employee object contains
only attributes not found in a Person object in conjunction with a pointer/reference to a
Person object. Using this system, you wouldn’t have to “throw away” the original Person
object when the Person needed to model an Employee, as the newly-created Employee
object could point to your original Person object. Of course, this approach breaks the
Liskov Substitution Principle[3] since you can’t use an Employee object wherever you
might use a Person object since Employee would no longer be a subtype of Person.

The solution for this common dilemma is contained in Prof. Subieta’s concept of
dynamic inheritance, or object roles. With dynamic inheritance, an application can
define an Employee class, a Parent class, and other such classes all of which are subtypes
of Person. When a person object requires an Employee role, the Employee object can be
created and be associated with the Person object as needed and later be disassociated or
destroyed when the Person is no longer acting in that role.

While this concept would allow a database schema to match the “real world” much more
closely than static inheritance allows, it is not a concept that is currently realized in
object-oriented programming languages. This does not mean, however, that this concept

Next Generation Object Database Standardization

OMG Object Database Technology Working Group White Paper
Document mars/2007-08-01

Page 11

could not be supported for objects resident in an AS2 store through the use of database-
supplied APIs and query semantics. The AS2 store model includes the static inheritance
features of AS1 plus dynamic inheritance:

• AS2 store: <S,C,R,CC,SC,SS> where S, C, R, CC and SC are as defined for AS1.
The relation SS is added to define the dynamic inheritance between objects and
roles. That is, if <i1,i2> ∈SS, the role object identified by object ID i1 is
dynamically inherited by the object identified by object ID i2.

The following is an example of an AS2 store:

aStore = <S = { <i1, Person, { <i2, name, ”Doe” >,

 <i3, born, 1948 > } >,
 <i4, Person, { <i5, name, ”Poe” >,

 <i6, born, 1975 >} >,
 <i7, Person, { <i8, name, ”Lee” >,

 <i9, born, 1951 >} >,
 <i13, Emp, { <i14, sal, 2500 >,

 <i15, worksIn, i127> } >,
 <i16, Emp, { <i17, sal, 1500 >,

 <i18, worksIn, i128> } >,
 <i19, Student, { <i20, studentNo, 223344 >,

 <i21, faculty, ”Physics” > } >
 } >,

 <C = { <i40, PersonClass , { <i41, age, (age code)> } >,
 <i50, EmpClass , { <i51, changeSal,

 (changeSal code) >,
 <i52, netSal, (netSal code)>}>,

 <i60, StudentClass , { <i61, avgScore,
 (avgScore code)> }>

 } >,
 <R = {i1, i4, i7, i13, i16, i19} >,
 <CC = {} >,
 <SC = { < i1, i40>, < i4, i40>, < i7, i40>, < i13, i50>,
 < i16, i50>, < i19, i60>
 } >,
 <SS = { < i13, i4>, < i16, i7>, < i19, i7> } >

Figure 4: Example of AS2 store

Notice in Figure 4 that there is no static inheritance between the classes in set C since
relation CC is empty. That is, the EmpClass object (ID i50) does not inherit from the
PersonClass object (ID i40). The instances of the EmpClass object contain only data
members (fields) applicable to employees (“sal” for salary, “worksIn” for pointer to
department (not modeled)) and do not include data members of PersonClass objects
(“name” for name and “born” for year of birth), so instances of EmpClass cannot be
“substituted” for PersonClass objects, though of course queries for employees will return
person objects that have the Emp role.

The relation SC in Figure 4 shows that the objects with identifiers i1, i4, and i7 are
members of the class with class object ID i40 (PersonClass). Likewise, the objects with

Next Generation Object Database Standardization

OMG Object Database Technology Working Group White Paper
Document mars/2007-08-01

Page 12

identifiers i13 and i16 are members of the class with class object ID i50 (EmpClass) and
the object with identifier i19 is a member of the class with class object ID i60
(StudentClass).

The relation SS in Figure 4 shows which objects have which roles. Note that unlike the
relations CC and SC, SS changes over time. SS shows that the role object with ID i13 is
associated with the object with ID i4 (that is, Person “Poe” is currently acting as an
Employee with salary 2500 working in the department with object ID i127).

A graphical depiction of the AS2 store shown in Figure 4 is shown below in Figure 5.

Figure 5: Example of AS2 store

The abstract query language (AOQL) syntax adds 2 new rules for supporting the AS2
store as shown below in Table 3:

Table 3: New AOQL syntax rules to support AS2

Syntax Rule Notes

query ::= (role_name) query Dynamic cast to return a role
from result of a query, useful
for objects which have
multiple roles

query ::= query has role role_name Existential test to see if result

Next Generation Object Database Standardization

OMG Object Database Technology Working Group White Paper
Document mars/2007-08-01

Page 13

has the specified role

The modifications to the abstract query processor itself are also minor, namely that the
initial state of the environment stack should include all of the objects and role objects
present in the store prior to query evaluation. Note here that this means an actual
implementation should have access to these objects, as opposed to pushing all of these
objects onto a call stack. Again, since we are talking here about an abstract machine there
is no constraint for stack size, etc. that would constrain an actual implementation.
Otherwise, the invariants from the role objects’ superclasses as well as the invariants
from the “regular” objects’ superclasses are pushed onto the environment stack during
query evaluation as is done for the AS1 store model.

4 Programming language access
Typically, object database developers want to access the contents of an object database
from their development language of choice (Java, C++, et. al.) without having to
construct and parse a query string. AOQL is in itself a language that is distinct from the
developer’s native programming language, and it is natural to question how we might
map the AOQL syntax to an object programming language so that the expressive power
of AOQL could be used via programming language APIs3.

In considering a programming language mapping to AOQL, it is tempting to construct an
abstract programming language to go with the abstract query language. This would keep
our formal definitions of the SBA concepts all in the abstract without “polluting” them
with platform/language-specific concepts. However, the task of defining an abstract
object-oriented programming language is difficult and there are actual programming
languages available which are platform and operating system neutral, which is the chief
benefit one would get from an abstract language. For the purposes of this white paper, we
will focus on a mapping from the AOQL to Ruby, which will serve as our “abstract”
object programming language. As an interpreted language that embodies both object-
oriented and functional programming concepts, Ruby is an excellent choice for an
AOQL-to-language mapping. Other platform-neutral language choices were considered
for this document (Java and Scala to name two), but Ruby was chosen for its popularity,
clarity and concise syntax.

Note that this white paper does not attempt to define the programming language APIs that
an application developer would use to query an object database. The intent is to show
how AOQL operators can be mapped to Ruby so that such APIs could later be created. If
AOQL’s operators and syntax can be mapped to a programming language, the theoretical
underpinnings that make AOQL a complete and correct query language can be used to
define a set of APIs that are also correct and complete for application developers.

3 A concrete implementation of AOQL would require a parser that would translate the query string into a
series of native programming language API calls, so formalizing this mapping is helpful even for the
construction and/or specification of a parser.

Next Generation Object Database Standardization

OMG Object Database Technology Working Group White Paper
Document mars/2007-08-01

Page 14

Table 4: Mapping of AOQL syntax to Ruby

Num AOQL Syntax Rule Ruby equivalent

1 query ::= literal Any Ruby literal, e.g. 2000, “abc” …

2 query ::= name Any Ruby variable name, e.g. Emp

3 query ::= unaryAlgOperator query Unary algebraic operators

 unaryAlgOperator ::= count | sum | max
| - | sqrt | not | avg | ...

$container4.size | $container.inject(0) {|cum_sum,item|
cum_sum + item } | $container.max | - | Math.sqrt | ! |
$container.inject(0) {|cum_sum,item| cum_sum + item } /
$container.size | …

4 query ::= query binaryAlgOperator
query

Binary algebraic operators

 binaryAlgOperator ::= =|<| >| +| -| *| /|
and| or| intersect|...

 =|<| >| +| -| *| /| and | or | & |…

5 query ::= query NonAlgOperator query Non-algebraic operator

4 NOTE: Throughout table 4, $container refers to any Ruby container that has Enumerable as a mixin,
including arrays and anonymous arrays, hashes, sequences, etc.

Next Generation Object Database Standardization

OMG Object Database Technology Working Group White Paper
Document mars/2007-08-01

Page 15

 NonAlgOperator ::= where | . | join | ∀

| ∃
Implemented through:
• predicate boolean result: where | ∀
e.g. where employee’s salary is more than
55000 could be done as:
result = $container.find_all {|employee|
employee.salary > 55000}

e.g. ∀ employees with salary > 55000 could be
done as:
($container.find_all {|employee|
employee.salary > 55000}).each {|s| puts s}

• predicate boolean result and result set

analysis: ∃
e.g. ∃ employee with salary > 55000 could be
done as:
($container.find_all {|employee|
employee.salary > 55000}).nil?

• direct object references: join
• built-in operator: .

 query ::= ∀query query | ∃query query See above.

6 query ::= query as name Name definition: using Ruby variables

7 query ::= query group as name Grouping and name definition: using variables
and structuring elements (collections, classes)

8 query ::= if query then query if (expr) then <statements> end

9 query ::= if query then query else query if (expr) then <statements>
else <statements> end

10 querySeq ::= query | query, querySeq Sequence of queries: could be in a method or
could be an anonymous function declaration
with multiple queries within

Next Generation Object Database Standardization

OMG Object Database Technology Working Group White Paper
Document mars/2007-08-01

Page 16

11 query ::= struct(querySeq) |

(querySeq)
Here, a structure containing an employee’s
salary and department is created from multiple
query sequences:

EmpSalDept = Struct.new(“EmpSalDept”, :salary,
:dept)
result = EmpSalDept.new(
($container.find{|employee| employee.SSN ==
123456789}).salary, (($container.find{|employee|
employee.SSN == 123456789}).worksIn
)

12 query ::= bag() | bag(querySeq) Here, a bag (simple unordered collection) is
created from multiple query sequences, the first
object in the “bag” is the employee’s salary and
the second object is what department the
employee works in:

Array[].(
($container.find{|employee| employee.SSN ==
123456789}).salary, (($container.find{|employee|
employee.SSN == 123456789}).worksIn
)

13 query ::= sequence() | sequence(
querySeq)

See above, in Ruby the sequence and the bag
would both be created from an array, which can
be iterated like an unordered list or accessed by
cell number (subscript)

Programming language access to an object database is a paramount concern for most
developers, so it may seem unnatural not to mention it first. The concepts of the Stack
Based Architecture, however, such as the definition of an object and the structure of a
store or the operation of the stack-based abstract machine, are easier to describe in terms
of the AOQL. If the contents of the query results stack (QRES) can be returned in a
“container” (equivalent of Ruby type with Enumerable mixin), then developing a
mapping between the AOQL and its native language equivalent is fairly straightforward
as shown in Table 4.

Next Generation Object Database Standardization

OMG Object Database Technology Working Group White Paper
Document mars/2007-08-01

Page 17

5 Updating from AOQL
Everything described in this paper has been about reading the contents of an object
database. What if you need to update the contents of an object database? Prof. Subieta
and his team at the PJIIT have developed extensions to their Stack-Based Query
Language (SBQL) that allow one to update the contents of a database. These changes are
still being worked on and the syntax is still being finalized.

6 So what does all this mean?
The precise and complete definitions of the AOQL and abstract stores that have been
defined by Prof. Subieta’s research allow us to build object databases with very powerful
query capabilities. Concrete implementations of these abstract machines would be quite
welcome in the object database marketplace, and there are reference implementations that
have been developed at the PJIIT. The ODBTWG believes an OMG specification could
be developed that features several compliance levels, thereby allowing market
differentiation depending on what features customers wish to pay for. Table 5 shows a
possible conformance level/feature matrix that could be used to indicate what level of
support for these features an object database could provide. A vendor could then indicate,
for example, that they conform at level 0 and include optional features SY and QL, so
their product could be said to be 0+SY+QL conformant.

Next Generation Object Database Standardization

OMG Object Database Technology Working Group White Paper
Document mars/2007-08-01

Page 18

Table 5: Possible conformance level/feature matrix
Conformance

Level
Store
Model

Compatible Data Features Optional
Features

0 AS0 One or more of the
following:
-tabular/CSV
-relational tables
-XML (w/o
inheritance)
-simple persisted
objects (no inheritance)

All of the following:
-native PL APIs providing
equivalent of basic AOQL
functionality
-storage of basic objects (no
inheritance)
-full transaction semantics

1 AS1 Zero or more of the
above plus one or more
of the following:
-XML files with static
inheritance
-persisted objects
which have static
inheritance

All of the above features plus
all of the following:
-native PL APIs providing
equivalent of inheritance-
aware AOQL
-store of objects with static
inheritance

2 AS2 Zero or more of the
above plus one or more
of the following:
-XML files which
include dynamic
inheritance (roles) in
their schema
-persisted objects
which have dynamic
inheritance (object
roles)

All of the above features plus
all of the following:
-native PL APIs providing
equivalent of role-aware
AOQL (e.g. the 2 additional
syntax rules included in
AOQL for roles)

-replication (RP)

-multi-versioning
(MV)

-synchronize over
non-reliable
network (SY)

-hot-spare fault
tolerance (HS)

-concrete query
language binding to
AOQL for query
string access to
database contents
(QL)

Initially the OMG would have to issue RFPs to establish the full and complete definitions
of the abstract query language and the semantics of the abstract store models. The
semantics and behavior of the standardized optional features would also have to be
defined. Subsequently, a second series of RFPs could be issued for concrete
implementations in Java, C++, etc.

Next Generation Object Database Standardization

OMG Object Database Technology Working Group White Paper
Document mars/2007-08-01

Page 19

7 A new object database standard
What we would like to have in the end is a new standard for object databases that is based
on a sound theoretical framework with precise and complete definitions. Prof. Subieta’s
work is a great starting place because it shows what must be available in an object store
in order to support an advanced query language. What we imagine is a new standard
which could be fashioned after the ODMG 3.0 specification, something like this:

OMG “Next Generation” Object Database Standard (“ODMG 4.0”)
Chapter 1 – Introductory material
Chapter 2 – New object model based on the abstract store model and an abstract stack-
based object query language (AOQL), includes definitions and detailed semantics of all
optional features to be standardized
Chapter 3 – XML/XSD specification for data import/export as replacement for “ODL”,
provided for all conformance levels
Chapter 4 – Full syntax of abstract query language, provided for all conformance levels
Chapter 5, 6, … - Programming language APIs for specific language bindings

Our new specification would not have to be done in this way, but such an organization
would be familiar to those who have used ODMG 3.0 in the past. Of prime importance
would be clear definitions and explicit semantics (especially in chapter 2), even including
the use of state diagrams or Petri nets as needed to convey the semantics of how certain
features are supposed to work in conformant products.

Looking forward, the plan is (assuming there is sufficient vendor interest) for the
ODBTWG to prepare (and then issue from its parent task force) one or more RFPs that
together will establish the full and complete definitions of the abstract query language
(AOQL) and the semantics of the abstract store models, as well as, the semantics and
behaviors of optional features (compliance points). This will be the Platform Independent
Model (PIM) for a conformant object database. When the PIM is defined, it will serve as
the basis for a series of RFPs to develop specifications for concrete implementations of
the "Next Generation Object Database" in Java, C++, etc., i.e., Platform Specific Models
(PSMs).

8 References

[1] Letter from Morgan Kaufman Publishers to OMG re: “License for use of the Object

Data Standard” dated 3 June 2004, OMG document: omg/2004-06-04.

[2] The Object Database Standard: ODMG 3.0, Cattell et. al., Morgan-Kaufman 2000,

ISBN 978-1558606470

[3] Liskov, B. and Wing, J. 1993 FAMILY Values: a BEHAVIORAL NOTION of

SUBTYPING. Technical Report. UMI Order Number: TR-562b., Massachusetts
Institute of Technology.

